首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29203篇
  免费   4003篇
  国内免费   3080篇
电工技术   2253篇
技术理论   1篇
综合类   3945篇
化学工业   2588篇
金属工艺   540篇
机械仪表   1600篇
建筑科学   3282篇
矿业工程   329篇
能源动力   839篇
轻工业   905篇
水利工程   805篇
石油天然气   507篇
武器工业   331篇
无线电   3340篇
一般工业技术   4514篇
冶金工业   752篇
原子能技术   343篇
自动化技术   9412篇
  2024年   56篇
  2023年   600篇
  2022年   790篇
  2021年   998篇
  2020年   1163篇
  2019年   1074篇
  2018年   1017篇
  2017年   1231篇
  2016年   1329篇
  2015年   1179篇
  2014年   1649篇
  2013年   2282篇
  2012年   2080篇
  2011年   2086篇
  2010年   1563篇
  2009年   1712篇
  2008年   1754篇
  2007年   1978篇
  2006年   1648篇
  2005年   1523篇
  2004年   1240篇
  2003年   1072篇
  2002年   922篇
  2001年   869篇
  2000年   765篇
  1999年   600篇
  1998年   477篇
  1997年   445篇
  1996年   347篇
  1995年   350篇
  1994年   264篇
  1993年   211篇
  1992年   194篇
  1991年   153篇
  1990年   139篇
  1989年   110篇
  1988年   87篇
  1987年   34篇
  1986年   27篇
  1985年   29篇
  1984年   33篇
  1983年   28篇
  1982年   29篇
  1981年   13篇
  1980年   26篇
  1979年   20篇
  1978年   15篇
  1977年   10篇
  1959年   8篇
  1955年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In the present paper, therapeutic treatment of infected tumorous cells has been studied through mathematical modeling and simulation of heat transfer in tissues by using a nonlinear dual-phase lag bioheat transfer model with Dirichlet boundary condition. The components of volumetric heat source in this model such as blood perfusion and metabolism are assumed experimentally validated temperature-dependent function, which gives more accurate temperature distribution in tissues through this model. We have used the finite difference and RK (4, 5) techniques of numerical methods to solve the proposed problem and obtained the exact solution in a particular case. After comparison, we got a good agreement between them. We have used dimensionless quantities throughout this paper. The effect of relaxation and thermalization time with respect to dimensionless temperature distribution has been analyzed in the treatment process.  相似文献   
2.
The thermodynamics modeling of a Reiner–Philippoff-type fluid is essential because it is a complex fluid with three distinct probable modifications. This fluid model can be modified to describe a shear-thinning, Newtonian, or shear-thickening fluid under varied viscoelastic conditions. This study constructs a mathematical model that describes a boundary layer flow of a Reiner–Philippoff fluid with nonlinear radiative heat flux and temperature- and concentration-induced buoyancy force. The dynamical model follows the usual conservation laws and is reduced through a nonsimilar group of transformations. The resulting equations are solved using a spectral-based local linearization method, and the accuracy of the numerical results is validated through the grid dependence and convergence tests. Detailed analyses of the effects of specific thermophysical parameters are presented through tables and graphs. The study reveals, among other results, that the buoyancy force, solute and thermal expansion coefficients, and thermal radiation increase the overall wall drag, heat, and mass fluxes. Furthermore, the study shows that amplifying the space and temperature-dependent heat source parameters allows fluid particles to lose their cohesive force and, consequently, maximize flow and heat transfer.  相似文献   
3.
Mixed reality can overlay and display 3D digital content in the real world, convey abstract concepts to users, and promote the understanding of complex tasks. However, the abstract graphics overlaid on the physical space may cause a certain cognitive load for local users and reduce the efficiency of collaboration. To improve the efficiency of remote collaboration, we conducted an elicitation study on assembly tasks, explored the user needs for collaboration, and defined the design goals of our remote collaboration method. Inspired by the mirror-neuron mechanism, we present an imitative collaboration method that allows local users to imitate the interaction behavior of remote users to complete tasks. We also propose a series of interaction methods for remote users to select, copy, and interact with the local point clouds to facilitate the expression of collaboration intentions. Finally, the results of a user study evaluating our imitative collaboration method on assembly tasks are reported, confirming that our method improves collaboration efficiency while reducing the cognitive load of local users.  相似文献   
4.
《Ceramics International》2022,48(6):8069-8080
Homogeneous thin films of Molybdenum oxide (MoO3) were grown on quartz and glass substrates using the thermal evaporation method. XRD results showed that the MoO3 powder has a polycrystalline structure with an orthorhombic crystal system whereas the MoO3 thin films have amorphous nature. SEM images showed that the MoO3 thin films have a nearly uniform surfaces with worm-like shape grains. The film thickness influences on the linear and nonlinear optical characteristics of MoO3 thin films that were examined using spectrophotometric measurements and from which, the linear optical constants of the MoO3 thin films were estimated. The electronic transition type was determined as a direct allowed one. The values of the optical band gap were obtained to be in the range of 3.88–3.72 eV. The dispersion parameters, third-order nonlinear optical susceptibility, and the nonlinear refractive index of the MoO3 thin films were determined and interpreted in the light of the single oscillator model. The temperature dependence of the DC electrical conductivity and the corresponding conduction mechanism for the MoO3 films were investigated at temperatures ranging from 303 to 463 K.  相似文献   
5.
Hydrogen is being considered a ‘fuel of the future,’ a viable alternative to fossil fuels in fuel cell vehicles. Using Density Functional Theory simulations, reversible, onboard hydrogen storage in Sc-decorated triazine-based graphitic carbon nitride (g-C3N4) has been explored. Sc atom binds strongly on the g-C3N4 structure with a binding energy of ?7.13 eV. Each Sc atom can reversibly bind 7 molecules of hydrogen, giving a net gravimetric storage capacity of 8.55 wt%, an average binding energy of ?0.394 eV per H2, and a corresponding desorption temperature of 458.28 K, fulfilling the criteria prescribed by the US Department of Energy. The issue of transition metal clustering has been investigated by computing the diffusion energy barrier (2.79 eV), which may be large enough to hinder the clustering tendencies. The structural integrity of Sc-g-C3N4 has been verified through ab-initio Molecular Dynamics simulations. The interaction mechanism of Sc over g-C3N4 and H2 over Sc-g-C3N4 has been explored using density of states and charge transfer analysis. A flow of charge from valence 3d orbitals of Sc towards vacant orbitals of g-C3N4 during the binding of Sc over g-C3N4 is observed. The binding of H2 on Sc-g-C3N4 may be via Kubas type of interactions which is stronger than physisorption due to net charge gain by H 1s orbital from Sc 3d orbital. Our systematic investigations indicate that Sc-decorated g-C3N4 may be a high-performance material for reversible hydrogen storage applications.  相似文献   
6.
Ammonia is considered as a promising hydrogen or energy carrier. Ammonia absorption or adsorption is an important aspect for both ammonia removal, storage and separation applications. To these ends, a wide range of solid and liquid sorbents have been investigated. Among these, the deep eutectic solvent (DES) is emerging as a promising class of ammonia absorbers. Herein, we report a novel type of DES, i.e., metal-containing DESs for ammonia absorption. Specifically, the NH3 absorption capacity is enhanced by ca. 18.1–36.9% when a small amount of metal chlorides, such as MgCl2, MnCl2 etc., are added into a DES composed of resorcinol (Res) and ethylene glycol (EG). To our knowledge, the MgCl2/Res/EG (0.1:1:2) DES outperforms most of the reported DESs. The excellent NH3 absorption performances of metal–containing DESs have been attributed to the synergy of Lewis acid–base and hydrogen bonding interactions. Additionally, good reversibility and high NH3/CO2 selectivity are achieved over the MgCl2/Res/EG (0.1:1:2) DES, which enables it to be a potential NH3 absorber for further investigations.  相似文献   
7.
为了更加真实、直观地呈现智能变电站的运行整体结构,构建基于VR技术的智能变电站运行仿真培训系统。该系统通过5个模块协同完成智能变电站运行仿真培训,结合实际变电站的设备情况,采用二维纹理映射方法完成变电站设备仿真建模;系统利用虚拟现实交互模块呈现培训场景,参与培训人员能够通过人机交互设备,实现场景漫游和相关培训内容操作。测试结果表明:该系统能够较好地模拟出智能变电站的实际运行情况,参与培训的人员可以身临其境地完成整个变电站的巡视,更真实、直观地呈现智能变电站的整体状态。  相似文献   
8.
The study of shock wave propagation in a detonation chamber is of great importance as a part of the plate forming process. Investigations related to the effects of premixed gas detonation on the deflection of a plate require in-depth examination. An Eulerian-Lagrangian numerical simulation is conducted using the space-time conservation element and solution element method of LS-DYNA software to study the effect of confined multi-point ignited gaseous mixture on the dynamic response of thin plates clamped at the end of a combustion chamber. The FSI couples a Lagrangian finite element solver with a Eulerian fluid solver in a 2D space with detailed chemistry of H2–O2 mixture. The solution contains the detonation wave propagation through the combustion chamber and its interaction with the plate. The influence of variation in the multi-point ignition locations and combustion chamber dimensions on the pressure history and plate deflection is studied. To verify the model, a comparison with the experimental study is carried out using an adjustable model representative of the real experiment. The verified model is used to link the evolution of plate shape with the arrival time and intensity of shock waves within the chamber. It is found that a longer distance between the ignition point and the plate intensifies the ultimate deflection of the plate. In addition, a fairly large combustion area employed in a direction rather than transverse to the plate surface is unable to influence the ultimate deformation of the plate.  相似文献   
9.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
10.
This study aims to fabricate mineral-loading nanocarriers using natural materials. The interaction patterns between ovalbumin (OVA) and four water-soluble polyphenols, namely ferulic acid (FA), (-)-Epigallo-catechin 3-gallate (EGCG), gallic acid (GA) and epicatechin (EC), were investigated. Results showed that the optimised conditions for preparing stable OVA–polyphenol complexes are at the OVA–polyphenol ratio of 4:1 at pH 6, under which OVA–FA and OVA–EGCG showed the highest stability and mineral-loading capacity among four OVA–polyphenol complexes. The fluorescence results indicated that the addition of EGCG and FA induced a significant fluorescence quenching to OVA. The interaction between OVA and polyphenols involved hydrogen bonding, hydrophobic interaction and electrostatic interaction. Fourier transform infrared spectroscopy (FTIR) analysis suggested that both FA and EGCG enhanced the stability and orderliness of the structure of OVA. The transmission electron microscopy images also exhibited the spherical structure of OVA after the addition of FA and EGCG. Furthermore, scanning electron microscope–energy dispersive X-ray spectrum results suggested that OVA–FA and OVA–EGCG complexes were better mineral carriers than OVA–GA and OVA–EC. This study may serve as the theoretical support for the promising application of OVA in the fabrication of mineral-loading nanocarriers in functional food and pharmaceutic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号